Analisis Komponen Utama dan Biplot untuk Mereduksi Faktor Inflasi Berdasarkan Indeks Harga Konsumen
DOI:
https://doi.org/10.46963/jam.v5i2.766Keywords:
Inflation, CPI, Principal Component Analysis, Biplot Analysis, VarianceAbstract
Inflation of a region can be measured from the Consumer Price Index (CPI) by spending group. The aim is to look at the factors that influence monthly inflation based on the CPI for 2021. Principal Component Analysis is used to reduce the expenditure group variables in the CPI, followed by biplot analysis to display the visualization of the first two main components of the PCA in a two-dimensional graph. The results of the main component analysis, (1) the primary expenditure component consists of housing, water, electricity and household fuel variables; equipment, tools and household routine maintenance; transportation; information, communication and financial services; recreation, sports and culture, (2) secondary expenditure components include food, drink and tobacco variables; health; education; general, and (3) complementary expenditure components, namely clothing and footwear variables; personal equipment and other services. These three components simultaneously can represent 88.1% of the diversity of the data. Biplot analysis succeeded in describing the similarity and position of the variables with a total variance of 75%
Downloads
References
Badan Pusat Statistik. (2022a). Indeks Harga konsumen (IHK). Retrieved from Inflasi website: https://www.bps.go.id/subject/3/inflasi.html
Badan Pusat Statistik. (2022b). Inflasi. Retrieved from Inflasi website: https://www.bps.go.id/subject/3/inflasi.html
Badan Pusat Statistik Kabupaten Indragiri Hilir. (2021). Kabupaten Indragiri Hilir Dalam Angka 2022 (Vol. 23). BPS Kabupaten Indragiri Hilir.
Badan Pusat Statistik Kabupaten Indragiri Hilir. (2022). Berita Resmi Statistik No. 01/01/1403/Th. IX, 3 Januari 2022: Perkembangan Indeks Harga Konsumen Agustus 2022. Tembilahan. Retrieved from https://inhilkab.bps.go.id/pressrelease/2022/01/03/376/perkembangan-indeks-harga-konsumen-tembilahan-desember-2021.html
Badan Pusat Statistik Provinsi Riau. (2021a). Inflasi (Persen), 2021. Retrieved from Inflasi website: https://riau.bps.go.id/indicator/3/1/2/inflasi.html
Badan Pusat Statistik Provinsi Riau. (2021b). Inflasi Triwulanan (Q to Q) Provinsi Riau Triwulan IV 2021. Pekanbaru: Badan Pusat Statistik Provinsi Riau.
Badan Pusat Statistik Provinsi Riau. (2021c). Perkembangan Indeks Harga Konsumen Provinsi Riau Desember 2021. Retrieved from Inflasi website: https://riau.bps.go.id/pressrelease/2022/01/03/830/perkembangan-indeks-harga-konsumen-provinsi-riau-desember-2021.html
Badan Pusat Statistik Provinsi Riau. (2022). Berita Resmi Statistik No. 01/01/14/Th. XXIII, 3 Januari 2022: Inflasi Desember 2021, NTP Desember 2021, Pariwisata November 2021. Pekanbaru.
Gower, J., Lubbe, S., & Roux, N. le. (2011). Principal Component Analysis Biplots. In Understanding Biplots (pp. 67–144). John Wiley & Sons, Ltd. https://doi.org/https://doi.org/10.1002/9780470973196.ch3
Ilmaniati, A., & Putro, B. E. (2019). Analisis komponen utama faktor-faktor pendahulu (antecendents) berbagi pengetahuan pada usaha mikro, kecil, dan menengah (UMKM) di Indonesia. Jurnal Teknologi, 11(1), 67–78.
Johnson, R. A., & Wichern, D. . (2007). Applied Multivariate Statistical Analiysis (6th Editio). New Jersey: Prentice Education, Inc.
Leleury, Z. A., & Wokanubun, A. E. (2015). Analisis Biplot Pada Pemetaan Karakteristik Kemiskinan Di Provinsi Maluku. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 9(1), 21–31. https://doi.org/10.30598/barekengvol9iss1pp21-31
Noya van Delsen, M. S., Wattimena, A. Z., & Saputri, S. (2017). Penggunaan Metode Analisis Komponen Utama Untuk Mereduksi Faktor-Faktor Inflasi Di Kota Ambon. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 11(2), 109–118. https://doi.org/10.30598/barekengvol11iss2pp109-118
Olawale, F., & Garwe, D. (2010). Obstacles to the growth of new SMEs in South Africa: A principal component analysis approach. African Journal of Business Management, 4(5), 729–738.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Anne Mudya Yolanda, Arisman Adnan, Rustam Efendi, Haposan Sirait, Irfansyah Irfansyah, Okta Bella Syuhada, Rahmad Ramadhan Laska, Riko Febrian

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright on any article is retained by the author(s).
2. The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution shareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
3. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
4. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
5. The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License